Here is an analysis on the three techniques which you can use for Fibonacci:
- For Loop
- Recursion
- Memoization
Here is my code to test all three:
public class Fibonnaci {
// Output = 0 1 1 2 3 5 8 13
static int fibMemo[];
public static void main(String args[]) {
int num = 20;
System.out.println("By For Loop");
Long startTimeForLoop = System.nanoTime();
// returns the fib series
int fibSeries[] = fib(num);
for (int i = 0; i < fibSeries.length; i++) {
System.out.print(" " + fibSeries[i] + " ");
}
Long stopTimeForLoop = System.nanoTime();
System.out.println("");
System.out.println("For Loop Time:" + (stopTimeForLoop - startTimeForLoop));
System.out.println("By Using Recursion");
Long startTimeRecursion = System.nanoTime();
// uses recursion
int fibSeriesRec[] = fibByRec(num);
for (int i = 0; i < fibSeriesRec.length; i++) {
System.out.print(" " + fibSeriesRec[i] + " ");
}
Long stopTimeRecursion = System.nanoTime();
System.out.println("");
System.out.println("For Loop Time:" + (stopTimeRecursion -startTimeRecursion));
System.out.println("By Using Memoization Technique");
Long startTimeMemo = System.nanoTime();
// uses memoization
fibMemo = new int[num];
fibByRecMemo(num-1);
for (int i = 0; i < fibMemo.length; i++) {
System.out.print(" " + fibMemo[i] + " ");
}
Long stopTimeMemo = System.nanoTime();
System.out.println("");
System.out.println("Memoization Time:" + (stopTimeMemo - startTimeMemo));
}
//fib by memoization
public static int fibByRecMemo(int num){
if(num == 0){
fibMemo[0] = 0;
return 0;
}
if(num ==1 || num ==2){
fibMemo[num] = 1;
return 1;
}
if(fibMemo[num] == 0){
fibMemo[num] = fibByRecMemo(num-1) + fibByRecMemo(num -2);
return fibMemo[num];
}else{
return fibMemo[num];
}
}
public static int[] fibByRec(int num) {
int fib[] = new int[num];
for (int i = 0; i < num; i++) {
fib[i] = fibRec(i);
}
return fib;
}
public static int fibRec(int num) {
if (num == 0) {
return 0;
} else if (num == 1 || num == 2) {
return 1;
} else {
return fibRec(num - 1) + fibRec(num - 2);
}
}
public static int[] fib(int num) {
int fibSum[] = new int[num];
for (int i = 0; i < num; i++) {
if (i == 0) {
fibSum[i] = i;
continue;
}
if (i == 1 || i == 2) {
fibSum[i] = 1;
continue;
}
fibSum[i] = fibSum[i - 1] + fibSum[i - 2];
}
return fibSum;
}
}
Here are the results:
By For Loop
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
For Loop Time:347688
By Using Recursion
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
For Loop Time:767004
By Using Memoization Technique
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
Memoization Time:327031
Hence we can see for loop is the best time wise and memoization matches closely.
But recursion takes the longest and may be you should avoid in real life. Also if you are using recursion make sure that you optimize the solution.
No comments:
Post a Comment